toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sovrano, V.A.; Bisazza, A.; Vallortigara, G. doi  openurl
  Title How fish do geometry in large and in small spaces Type Journal Article
  Year 2007 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 1 Pages 47-54  
  Keywords Animals; *Association Learning; Color Perception; Cues; *Discrimination Learning; *Distance Perception; *Fishes; Male; Pattern Recognition, Visual; Social Environment; *Space Perception; Visual Perception  
  Abstract It has been shown that children and non-human animals seem to integrate geometric and featural information to different extents in order to reorient themselves in environments of different spatial scales. We trained fish (redtail splitfins, Xenotoca eiseni) to reorient to find a corner in a rectangular tank with a distinctive featural cue (a blue wall). Then we tested fish after displacement of the feature on another adjacent wall. In the large enclosure, fish chose the two corners with the feature, and also tended to choose among them the one that maintained the correct arrangement of the featural cue with respect to geometric sense (i.e. left-right position). In contrast, in the small enclosure, fish chose both the two corners with the features and the corner, without any feature, that maintained the correct metric arrangement of the walls with respect to geometric sense. Possible reasons for species differences in the use of geometric and non-geometric information are discussed.  
  Address Department of General Psychology, University of Padua, Via Venezia, 8, 35131, Padova, Italy. valeriaanna.sovrano@unipd.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16794851 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2462  
Permanent link to this record
 

 
Author Vonk, J. doi  openurl
  Title Gorilla ( Gorilla gorilla gorilla) and orangutan ( Pongo abelii) understanding of first- and second-order relations Type Journal Article
  Year 2003 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 2 Pages 77-86  
  Keywords Animals; *Cognition; Color Perception; Female; Gorilla gorilla/*psychology; Male; Pongo pygmaeus/*psychology; Task Performance and Analysis  
  Abstract Four orangutans and one gorilla matched images in a delayed matching-to-sample (DMTS) task based on the relationship between items depicted in those images, thus demonstrating understanding of both first- and second-order relations. Subjects matched items on the basis of identity, color, or shape (first-order relations, experiment 1) or same shape, same color between items (second-order relations, experiment 2). Four of the five subjects performed above chance on the second-order relations DMTS task within the first block of five sessions. High levels of performance on this task did not result from reliance on perceptual feature matching and thus indicate the capability for abstract relational concepts in two species of great ape.  
  Address York University, 4700 Keele Street,Toronto, ON M3J 1P3, Canada. jxv9592@louisiana.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12687418 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2578  
Permanent link to this record
 

 
Author Pick, D.F.; Lovell, G.; Brown, S.; Dail, D. url  doi
openurl 
  Title Equine color perception revisited Type Journal Article
  Year 1994 Publication (up) Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 42 Issue 1 Pages 61-65  
  Keywords Equine; Color perception; Dichromat  
  Abstract An attempt to replicate Grzimek (1952; Z. Tierpsychol., 27: 330-338) is reported where a Quarter-Horse mare chose between colored and gray stimuli for food reinforcement. Stimuli varied across a broad range of reflectance values. A double-blind procedure with additional controls for auditory, olfactory, tactile, and position cues was used. The subject could reliably discriminate blue (462 nm) vs. gray, and red (700 nm) vs. gray without regard to reflectance (P<0.001), but could not discriminate green (496 nm) vs. gray. It is suggested that horses are dichromats in a manner similar to swine and cattle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4368  
Permanent link to this record
 

 
Author Hampton, R.R.; Shettleworth, S.J. openurl 
  Title Hippocampal lesions impair memory for location but not color in passerine birds Type Journal Article
  Year 1996 Publication (up) Behavioral neuroscience Abbreviated Journal Behav Neurosci  
  Volume 110 Issue 4 Pages 831-835  
  Keywords Animals; Appetitive Behavior/physiology; Birds/*physiology; Brain Mapping; Color Perception/*physiology; Discrimination Learning/physiology; Hippocampus/*physiology; Long-Term Potentiation/physiology; Mental Recall/*physiology; Orientation/*physiology; Species Specificity  
  Abstract The effects of hippocampal complex lesions on memory for location and color were assessed in black-capped chickadees (Parus atricapillus) and dark-eyed juncos (Junco hyemalis) in operant tests of matching to sample. Before surgery, most birds were more accurate on tests of memory for location than on tests of memory for color. Damage to the hippocampal complex caused a decline in memory for location, whereas memory for color was not affected in the same birds. This dissociation indicates that the avian hippocampus plays an important role in spatial cognition and suggests that this brain structure may play no role in working memory generally.  
  Address Department of Psychology, University of Toronto, Ontario, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7044 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8864273 Approved no  
  Call Number refbase @ user @ Serial 376  
Permanent link to this record
 

 
Author Mrosovsky, N.; Shettleworth, S.J. openurl 
  Title Wavelength preferences and brightness cues in the water finding behaviour of sea turtles Type Journal Article
  Year 1968 Publication (up) Behaviour Abbreviated Journal Behaviour  
  Volume 32 Issue 4 Pages 211-257  
  Keywords Animals; *Behavior, Animal; *Color Perception; Cues; Light; *Turtles; Water  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0005-7959 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:5717260 Approved no  
  Call Number refbase @ user @ Serial 391  
Permanent link to this record
 

 
Author Salzen, E.A.; Cornell, J.M. openurl 
  Title Self-perception and species recognition in birds Type Journal Article
  Year 1968 Publication (up) Behaviour Abbreviated Journal Behaviour  
  Volume 30 Issue 1 Pages 44-65  
  Keywords Animals; Birds; Color Perception; Discrimination Learning; Generalization, Response; Imprinting (Psychology); *Perception; *Self Concept; Social Isolation; *Species Specificity; Water  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0005-7959 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:5644775 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4154  
Permanent link to this record
 

 
Author Shettleworth, S.J. doi  openurl
  Title Memory and hippocampal specialization in food-storing birds: challenges for research on comparative cognition Type Journal Article
  Year 2003 Publication (up) Brain, behavior and evolution Abbreviated Journal Brain Behav Evol  
  Volume 62 Issue 2 Pages 108-116  
  Keywords Animals; Birds/*physiology; Cognition/*physiology; Color Perception/physiology; Feeding Behavior/*physiology; Hippocampus/*physiology; Memory/*physiology; Species Specificity  
  Abstract The three-way association among food-storing behavior, spatial memory, and hippocampal enlargement in some species of birds is widely cited as an example of a new 'cognitive ecology' or 'neuroecology.' Whether this relationship is as strong as it first appears and whether it might be evidence for an adaptive specialization of memory and hippocampus in food-storers have recently been the subject of some controversy [Bolhuis and Macphail, 2001; Macphail and Bolhuis, 2001]. These critiques are based on misconceptions about the nature of adaptive specializations in cognition, misconceptions about the uniformity of results to be expected from applying the comparative method to data from a wide range of species, and a narrow view of what kinds of cognitive adaptations are theoretically interesting. New analyses of why food-storers (black-capped chickadees, Poecile Atricapilla) respond preferentially to spatial over color cues when both are relevant in a memory task show that this reflects a relative superiority of spatial memory as compared to memory for color rather than exceptional spatial attention or spatial discrimination ability. New studies of chickadees from more or less harsh winter climates also support the adaptive specialization hypothesis and suggest that within-species comparisons may be especially valuable for unraveling details of the relationships among ecology, memory, and brain in food-storing species.  
  Address Department of Psychology, University of Toronto, Toronto, Ont., M5S 3G3, Canada. shettle@psych.utoronto.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12937349 Approved no  
  Call Number refbase @ user @ Serial 367  
Permanent link to this record
 

 
Author Yokoyama, S.; Radlwimmer, F.B. url  openurl
  Title The molecular genetics of red and green color vision in mammals Type Journal Article
  Year 1999 Publication (up) Genetics Abbreviated Journal Genetics  
  Volume 153 Issue 2 Pages 919-932  
  Keywords Amino Acid Sequence; Animals; Base Sequence; COS Cells; Cats; Color Perception/*genetics; DNA Primers; Deer; Dolphins; *Evolution, Molecular; Goats; Guinea Pigs; Horses; Humans; Mammals/*genetics/physiology; Mice; Molecular Sequence Data; Opsin/biosynthesis/chemistry/*genetics; *Phylogeny; Rabbits; Rats; Recombinant Proteins/biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; Sciuridae; Sequence Alignment; Sequence Homology, Amino Acid; Transfection  
  Abstract To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the “true” red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).  
  Address Department of Biology, Syracuse University, Syracuse, New York 13244, USA. syokoyam@mailbox.syr.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6731 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10511567 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4063  
Permanent link to this record
 

 
Author Hanggi, E.B.; Ingersoll, J.F.; Waggoner, T.L. doi  openurl
  Title Color vision in horses (Equus caballus): deficiencies identified using a pseudoisochromatic plate test Type Journal Article
  Year 2007 Publication (up) Journal of Comparative Psychology Abbreviated Journal J. Comp. Psychol.  
  Volume 121 Issue 1 Pages 65-72  
  Keywords Animals; Appetitive Behavior; *Color Perception; Color Perception Tests/veterinary; *Discrimination Learning; Female; Horses/*psychology; Male; Sensitivity and Specificity  
  Abstract In the past, equine color vision was tested with stimuli composed either of painted cards or photographic slides or through physiological testing using electroretinogram flicker photometry. Some studies produced similar results, but others did not, demonstrating that there was not yet a definitive answer regarding color vision in horses (Equus caballus). In this study, a pseudoisochromatic plate test--which is highly effective in testing color vision both in small children and in adult humans--was used for the first time on a nonhuman animal. Stimuli consisted of different colored dotted circles set against backgrounds of varying dots. The coloration of the circles corresponded to the visual capabilities of different types of color deficiencies (anomalous trichromacy and dichromacy). Four horses were tested on a 2-choice discrimination task. All horses successfully reached criterion for gray circles and demonstration circles. None of the horses were able to discriminate the protan-deutan plate or the individual protan or deutan plates. However, all were able to discriminate the tritan plate. The results suggest that horses are dichromats with color vision capabilities similar to those of humans with red-green color deficiencies.  
  Address Equine Research Foundation, Aptos, CA 95001, USA. EquiResF@aol.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7036 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17324076 Approved no  
  Call Number refbase @ user @ ; Equine Behaviour @ team @ room B 3.029 Serial 1972  
Permanent link to this record
 

 
Author Hall, C.A.; Cassaday, H.J.; Vincent, C.J.; Derrington, A.M. doi  openurl
  Title Cone excitation ratios correlate with color discrimination performance in the horse (Equus caballus) Type Journal Article
  Year 2006 Publication (up) Journal of comparative psychology (Washington, D.C. : 1983) Abbreviated Journal J Comp Psychol  
  Volume 120 Issue 4 Pages 438-448  
  Keywords Animals; Behavior, Animal; *Color Perception; *Discrimination (Psychology); Discrimination Learning; Horses; Photoreceptors, Vertebrate/*physiology  
  Abstract Six horses (Equus caballus) were trained to discriminate color from grays in a counterbalanced sequence in which lightness cues were irrelevant. Subsequently, the pretrained colors were presented in a different sequence. Two sets of novel colors paired with novel grays were also tested. Performance was just as good in these transfer tests. Once the horse had learned to select the chromatic from the achromatic stimulus, regardless of the specific color, they were immediately able to apply this rule to novel stimuli. In terms of the underlying visual mechanisms, the present study showed for the first time that the spectral sensitivity of horse cone photopigments, measured as cone excitation ratios, was correlated with color discrimination performance, measured as accuracy, repeated errors, and latency of approach.  
  Address School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, United Kingdom. carol.hall@ntu.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7036 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17115866 Approved no  
  Call Number Serial 1780  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print